Maximizing Sustainable Production: The Role of Wetlands in Regional Sustainability

David Pfahler PhD Candidate University of Florida

Problem Statement

- How can we predict a maximum sustainable production level within a regional watershed?
- Approach:
 - A question of sustainable scale involving both environmental and economic production
 - Model the regional product using a land use optimization approach
 - Incorporate ecosystem services as sustainability constraints

Peace River Basin Charlotte Harbor Polk Hardee DeSoto Charlotte

- **Peace River Region**
 - Peace River basin in southwest Florida
 - Boundaries expanded to include entire county area
 - Water use caution area
 - Extensive phosphate mining within the watershed.

Land Use Change

1940

1999

1940 1999

- 1% 10% Urban
- 8% 17% Intensive Ag
- 3% 27% Improved Pasture
- .5% 10% Mining

Peace River Cumulative Impact Study, 2007. FDEP

Methods

• Regional EIO-LCA Model

- IMPLAN regional economic model baseline
- Development of regional resource intensity vectors using public data
- Accounts for both direct and indirect impacts
- Land Use Optimization Model
 - Collapse industries to major land uses
 - Separate out indirect inter-industry impacts
 - Use average environmental water and energy budgets for land uses

Sustainability Constraints

• Groundwater balance

- Based on minimum flows and levels
- Storm runoff storage
 - Based on 24 hour 25 year return storm
- GHG emissions
 - Based on meeting Kyoto protocol reduction targets

• Renewable energy

- Based on proposed renewable energy standard and RFS

Focusing on the Role of Wetlands

- How do wetlands provide value in the regional production system?
- Value is defined as an increase in the optimization goal

Run 1: Ground Water Constraint

Initial Land Use

GW constraint

Total Output: \$M 26,271

Run 2: Market Growth Limits

Run 3: No Wetland Area Limit

Regional Impact

Discussion

- Wetland area increases to provide sustainable ground water recharge
- The region appears to be close to the maximum production level already
- An implementation of this model could be used to test future development scenarios

Acknowledgements

Thank you to the Adaptive Management of Wetlands, Water, and Watersheds IGERT and the University of Florida Center for Environmental Policy for support for this research effort.

